An Efficient Synthesis of Unsymmetrical Sulfides from Organic Disulfides and Aromatic Compounds

Teruaki MUKAIYAMA and Kaoru SUZUKI Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162

In the presence of an active acidic catalyst generated from SbCl₅ and AgSbF₆, the sulfenylation reaction of aromatic compounds with organic disulfides smoothly proceeds in refluxing 1,2-dichloroethane to afford the corresponding unsymmetrical sulfides in high yields.

Several synthetic methods for unsymmetrical sulfides are known; for example, the nucleophilic displacement of aryl halides with sodium alkanethiolates¹⁾ or with aromatic thiols catalyzed by a nickel (0) complex,²⁾ the reaction between 1-alkylthioethaniminium halides and organic halides using a phase-transfer catalyst,³⁾ the reaction between naphthols and organic thiols,⁴⁾ and the thermolysis of diaryl disulfides in the presence of aryl iodides at high temperature⁵⁾ have been reported.

Recently, we focused our attentions on the utilization of unique characters of some active cationic species generated from Lewis acids and LiClO₄ or silver salts such as AgClO₄, AgSbF₆, AgOTf, etc., and reported the catalytic Beckmann⁶) and pinacol⁷) rearrangements, the catalytic Friedel-Crafts acylation reaction,⁸) the catalytic esterification⁹) and the catalytic and highly stereoselective glycosylation.¹⁰) In this communication, we would like to report a new approach to the sulfenylation reaction of aromatic compounds with organic disulfides by the promotion of SbCl₅-AgSbF₆ catalyst system.

In the first place, several combinations of Lewis acids and AgSbF₆ were examined by taking the reaction of anisole (methoxybezene) with diphenyldisulfide as a model (Table 1). As the result of the screening of Lewis acids, it was found that an active cationic species generated in situ from SbCl₅ and AgSbF₆ effectively activated the sulfur-sulfur bonds of organic disulfides and gave a good result.

Next, the effect of silver salts was examined using SbCl₅ as a Lewis acid in the reaction of anisole and diphenyldisulfide (Table 2). Among several silver salts, the best yield was obtained when AgSbF₆ was used.

Results of the sulfenylation reaction of some aromatic compounds with organic disulfides catalyzed by 30 mol% of SbCl₅-AgSbF₆ are listed in Table 3. Anisole or 1-methoxy-2-methylbenzene smoothly reacts with organic disulfides to give the corresponding unsymmetrical sulfides in high yields. 1,3,5-Trimethylbenzene also works well. In these reactions, only para-substituted sulfides were obtained and formation of other isomers (o-or m-) was not observed by ¹H and ¹³C NMR. In the case of 1,3-dimethoxybenzene, the desired monosulfenylated product was obtained in 85% yield by using double molar quantity of 1,3-dimethoxybenzene (Table 3, entry 8), while both of mono- and di-sulfenylated products were obtained in 47% and 52% yield respectively in the reaction of equimolecular amounts of 1,3-dimethoxybenzene and dimethyldisulfide (Table 3, entry 7).

Table 1. Effect of Lewis Acid

Entry	Lewis acid	Yield/%	Entry	Lewis acid	Yield/%
1	SbCl ₅	76	6	AICI ₃	28
2	SnCl ₄	40	7	GaCl₃	23
3	CuCl ₂	39	8	InCl ₃	21
4	FeCl ₃	34	9	SnCl ₂	17
5	GeCl₄	33	10	TiCl ₄	13

Table 2. Effect of Silver Salt

Entry	Silver salt	Yield/%	
1 a)	AgClO₄	29	
2 ^{a)}	AgSbF ₆	38	
3	AgSbF ₆	76	
4	AgBF ₄	31	
5	AgPF ₆	27	
6	AgOTf	26	

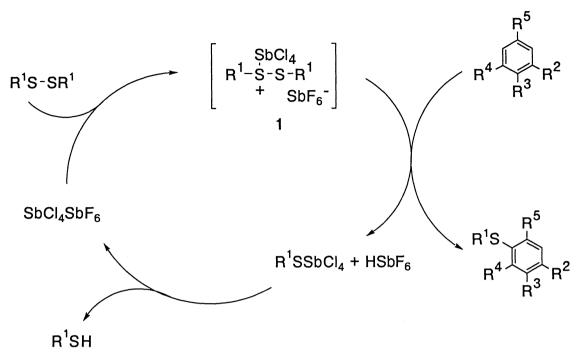
a) The reaction was carried out at room temperature.

A typical experimental procedure is described for the reaction of anisole with dimethyldisulfide; $SbCl_5$ (0.15 mmol) and $AgSbF_6$ (0.15 mmol) were stirred for 1 h in 1,2-dichloroethane (2.0 ml) at rt, and then a

solution of dimethyldisulfide (0.5 mmol) in 1,2-dichloroethane (2.0 ml) and a solution of anisole (1.0 mmol) in 1,2-dichloroethane (2.0 ml) were successively added at rt. The reaction mixture was heated for 3 h under reflux, and then quenched with aq. sat. NaHCO₃. After usual work up, the crude product was purified by preparative TLC on silica gel to afford 1-methoxy-4-methylthiobenzene in 92% yield.

Table 3. The Sulfenylation Reaction Catalyzed by SbCl₅-AgSbF₆

R¹S-SR¹ +
$$R^4$$
 R^2 R^2 R^3 SbCl₅ + AgSbF₆ R^5 R^5 R^5 R^4 R^2 R^3 R^4 R^2 R^3


Entry ^{a)}	R ¹	R ²	R ³	R⁴	R ⁵	Time/h	Yield/%	
1	Ph	MeO	Н	Н	Н	3	quant.	
2 b)	Ph	MeO	Н	Н	Н	3	81	
3	Ме	MeO	Н	Н	Н	3	92	
4	Ph	MeO	Me	Н	Н	3	quant.	
5	Ме	MeO	Ме	Н	Н	3	97	
6	Ме	MeO	MeO	Н	Н	4	0 (94) ^{c)}	
₇ b)	Ме	MeO	Н	MeO	Н	3	47 (52) ^{c)}	
8	Me	MeO	Н	MeO	Н	3	85 (14) ^{C)}	
9	Me	Me	Н	Me	Ме	3	89	

- a) Disulfides and aromatic compouds were used in a ratio of 1:2.
- b) Disulfides and aromatic compouds were used in a ratio of 1:1.
- c) The yields of di-sulfenylated products.

Although the mechanism of the present reaction is not yet made clear at this stage, it is assumed that an organic disulfide forms a reactive intermediate 1 with the active catalyst SbCl₄SbF₆ (Scheme 1). Then 1 reacts with an aromatic compound to give the desired sulfide along with HSbF₆, which in turn reacts with R¹S SbCl₄ to regenerate the catalyst along with R¹SH.

Thus, further successful use of the combination of SbCl₅ and AgSbF₆ as a potential catalyst system in organic synthesis⁶⁻⁸⁾ was demonstrated.

Further investigations concerning the scope of the present reaction as well as the mechanism are now in progress.

Scheme 1. The catalytic cycle.

References

- 1) D. Chianelli, L. Testaferri, M. Tiecco, and M. Tingoli, *Synthesis*, 1982, 475; L. Testaferri, M. Tiecco, M. Tingoli, D. Chianelli, and M. Montanucci, *ibid.*, 1983, 751.
- 2) K. Takagi, Chem. Lett., 1987, 2221.
- 3) T. Takido and K. Itabashi, Synthesis, 1987, 817.
- 4) T. Nakazawa, N. Hirose, and K. Itabashi, Synthesis, 1989, 955.
- 5) Z. Y. Wang and A. S. Hay, Tetrahedron Lett., 31, 5685 (1990).
- 6) T. Mukaiyama and T. Harada, Chem. Lett., 1991, 1653.
- 7) T. Harada and T. Mukaiyama, Chem. Lett., 1992, 81.
- 8) T. Mukaiyama, T. Ohno, T. Nishimura, J. S. Han, and S. Kobayashi, *Chem. Lett.*, 1991, 1059; T. Mukaiyama, K. Suzuki, J. S. Han, and S. Kobayashi, *ibid.*, 1992, 435.
- 9) T. Mukaiyama, I. Shiina, and M. Miyashita, Chem. Lett., 1992, 625.
- 10) T. Mukaiyama, M. Katsurada, and T. Takashima, Chem. Lett., 1991, 985.

(Received September 21, 1992)